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We consider the classical problem of a free surface flowing past one or more distur-

bances in a channel. The fluid is assumed to be inviscid and incompressible, and

the flow, irrotational. Both the effects of gravity and surface tension are considered.

The stability of critical flow steady solutions, which have subcritical flow upstream of

the disturbance and supercritical flow downstream, is investigated. We compute the

initial steady solution using boundary integral equation techniques based on Cauchy

integral formula, and advance the solution forward in time using a mixed Euler-

Lagrange method along with Adams-Bashforth-Moulton scheme. Both gravity and

gravity-capillary critical flow solutions are found to be stable. The stability of solu-

tions with a train of waves trapped between two disturbances is also investigated in

the pure gravity and gravity-capillary cases.
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I. INTRODUCTION

Two-dimensional free surface flows past a disturbance in a channel, usually in the form of

either a locally applied pressure distribution on the free surface or a submerged obstruction

on the bottom of the channel, is a widely studied problem in fluid mechanics. Both steady

and unsteady solutions have been investigated using fully nonlinear methods in the pure

gravity, where the effects of surface tension are ignored, and the gravity-capillary cases.

The key parameters in describing the flow are the upstream and downstream Froude

numbers

Fup =
V√
gh
, F =

U√
gH

=

(
h

H

) 3
2

Fup, (1)

respectively, the downstream Bond number

τ =
σ

ρgH2
, (2)

and the shape of the disturbance. Here V and U are the respective steady flow velocities

upstream and downstream of the disturbance, h and H are the upstream and downstream

fluid depths respectively, g is the acceleration due to gravity, ρ is the fluid density, and σ is

the coefficient of surface tension.

Most previous studies have concentrated on the case of a uniform flow where the mean

depth of the fluid is the same up and downstream, i.e. U = V , h = H. The free surface then

takes the form of either a solitary wave (e.g. see Vanden-Broeck1 in the steady case, and

Grimshaw, Maleewong and Asavanant2, and Grimshaw and Maleewong3 in the unsteady

case), or has a periodic wave train downstream of the disturbance (e.g. see Grandison and

Vanden-Broeck4 in the steady case, Grimshaw and Maleewong3 in the unsteady case).

Fewer studies have considered conjugate flow solutions. Steady hydraulic falls, where the

flow upstream is subcritical (Fup < 1) and the flow downstream is supercritical (F > 1),

resulting in the depth of the flow decreasing over the disturbance, past a single submerged

obstruction were considered in the pure gravity case by Forbes5. Dias and Vanden-Broeck6

later computed generalized hydraulic falls where a train of gravity waves exists upstream of

the fall. However, these solutions are unphysical, as they violate the radiation condition. By

including a second obstruction further upstream, Dias and Vanden-Broeck7 found solutions

with a train of waves trapped between the submerged obstructions. They were then able to
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show that the generalized hydraulic fall solutions are physically relevant when considered

as the localised flow over an obstacle in a flow configuration which includes at least one

additional disturbance further upstream. These trapped wave solutions have also been

observed experimentally, see Pratt8. When the additional obstacle is placed downstream,

where the flow is supercritical, it has been shown that a solitary type wave is found over the

additional obstruction, see Belward9.

Fully nonlinear hydraulic fall solutions in the steady gravity-capillary case have been

computed by Page, Grandison and Părău10. They showed that in order to obtain trapped

wave solutions when capillary effects are included, unless the surface tension is very weak, the

additional obstacle must be placed downstream. In this case, the trapped wave train occurs

in the supercritical regime. Otherwise, placing an additional obstacle upstream results in

solitary like waves appearing over the obstacle.

We are interested in the stability of the pure gravity and the gravity-capillary hydraulic

fall solutions in both the one and two obstruction configurations. There is a small amount of

existing literature examining the stability of the pure gravity hydraulic fall using a weakly

nonlinear analysis. Chardard et al.11 showed that the forced Korteweg-de Vries (fKdV)

equation suggests that the hydraulic fall generated over a moving obstruction, in a fluid

otherwise at rest, is stable. However, they noted that there is a problem in concluding the

stability of ‘rising fronts’, where the Froude number is supercritical upstream and subcritical

downstream, due to the complexity of the boundary conditions in this case.

The stability of the pure gravity hydraulic fall is also supported by the work of Donahue

and Shen12. Using a fKdV equation, they perturbed an initial stationary hydraulic fall solu-

tion with white noise. It was demonstrated that as time evolves the white noise dissipates,

and the solution returns to the shape of the initial hydraulic fall. They simulated the effect

of the upstream discontinuity and showed that, provided the domain was large enough, the

discontinuity did not locally affect the results.

In this paper we investigate the stability of the pure gravity and gravity-capillary hy-

draulic falls using the fully nonlinear equations. Chardard et al.11 extended their stability

analysis to pure gravity free surface profiles over two obstructions, and predicted that the

generalized hydraulic fall is unstable. We extend the work in this paper to consider the

stability of the trapped wave solutions found by Dias and Vanden-Broeck7 and Page et al.10.

In section II we formulate the problem mathematically using the unsteady fully nonlinear
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equations. Then in section III we discuss the fully nonlinear scheme used to solve the problem

numerically, and advance the solution forward in time. Our results are presented in section

IV, and we finish with a conclusion and discussion of our findings in section V.

II. FORMULATION

We consider an incompressible, inviscid two-dimensional fluid, lying at rest in a channel.

On the bottom of the channel, one or more arbitrarily shaped submerged obstructions move

to the left with speed U . Cartesian coordinates (x∗, y∗) are introduced, such that the x∗-

axis is aligned parallel to the undisturbed channel bottom, and the y∗-axis points vertically

upwards, through an obstacle at time t = 0. The flow is assumed to be irrotational, and is

subject to gravitational acceleration g in the negative y∗-direction.

Physically, when a submerged obstruction moves through a fluid at rest, one would require

that as x∗ → ±∞ any disturbances should decay to zero. However, we seek hydraulic fall

solutions which require that locally the depth of the fluid is different far upstream and

downstream of the obstruction. Upstream the fluid has constant depth h and constant

velocity V − U , and downstream constant depth H < h and zero velocity. In order to

overcome this problem we consider the work of Donahue and Shen12. Using a fKdV equation

and a domain of size −W < x∗ < W , they let their stationary hydraulic fall solution lie in

the range −W/2 < x∗ < W/2. Then, in order to satisfy the physical boundary condition

that the flow is uniform and at rest as x∗ → ±∞, a jump must occur somewhere further up

or downstream in the flow. This jump must occur at ±W/2. Donahue and Shen simulated

the consequential discontinuity created at the jump and found that this led to a disturbance

propagating in both directions. However, provided that W is large enough, they showed

that this disturbance can be ignored when considering just the flow in the local vicinity

of the obstruction. We can therefore take W/2 to be infinitely long, and assume that the

additional jump and discontinuities start at x∗ = −∞. At infinity we can then impose

the hydraulic fall boundary conditions, and examine the flow just in the local vicinity of

the obstacle. Physically, we could also choose to view the problem as a moving submerged

obstacle pushing a bulk of fluid upstream (with speed V − U) in a fluid otherwise at rest.

We define the free surface and the channel bottom by y∗ = H + η∗(x∗, t∗) and y∗ =

B∗(x∗, t∗) respectively, and non-dimensionalise the problem by taking H as unit depth, and
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FIG. 1. Dimensionless local flow configuration over a single moving obstruction on the bottom of

the channel.

U as unit speed. Non-starred variables are thus now understood to be dimensionless. The

dimensionless upstream velocity is given by (V − U)/U = γ − 1, and thus, by conservation

of mass, the dimensionless upstream depth is 1/γ.

After introducing the velocity potential φ(x, y, t), the problem is formulated as a system

of nonlinear equations. The Laplace equation

∇2φ = 0 (3)

must be satisfied in the fluid domain, subject to the free surface boundary conditions, and

the kinematic boundary condition on the channel bottom

Bt + φxBx = φy on y = B(x, t). (4)

To write the free surface conditions we follow the approach of previous work, for example

Cooker et al.13 and Grimshaw and Maleewong2, which uses a mixed Euler-Lagrange method.

We therefore write (x, y) = (x, 1+η(x, t)) = (X(s, t), Y (s, t)) on the free surface, where s is a

parametrisation of the free surface. We also write φ(x, 1+η(x, t), t) := φ(X(s, t), Y (s, t), t) :=

Φ(s, t) on the free surface. The kinematic and dynamic conditions on the free surface are

then expressed in Lagrangian form

DX

Dt
=
∂φ

∂x
, (5)

DY

Dt
=
∂φ

∂y
, (6)

F 2Dφ

Dt
=
F 2

2

((
∂φ

∂x

)2

+

(
∂φ

∂y

)2
)
− y + τκ, (7)
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where D/Dt = ∂/∂t + ∇φ · ∇ is the material derivative, and κ = ηxx/(1 + η2
x)

3
2 describes

the curvature of the free surface.

Equations (5)-(7) then provide the means to advance a solution forward in time. To

proceed, we write the partial derivatives φx and φy on the free surface as;

φx =
φs̄Xs − φn̄Ys√

X2
s + Y 2

s

and φy =
φs̄Ys + φn̄Xs√

X2
s + Y 2

s

, (8)

where φs̄ and φn̄ are the derivatives in the tangential and normal directions respectively.

Here, s̄ denotes the arclength on the free surface, and we have used the relation

φs̄ =
Φs√

X2
s + Y 2

s

, (9)

see for example, Dold14. Next, we scale the derivatives using

φs = φs̄
√
X2
s + Y 2

s , φn = φn̄
√
X2
s + Y 2

s , (10)

where φs = ∂Φ(s, t)/∂s. Then, denoting the derivatives with respect to s by a prime, we

obtain

φx =
φsX

′ − φnY ′

X ′2 + Y ′2
and φy =

φsY
′ + φnX

′

X ′2 + Y ′2
. (11)

As we seek hydraulic falls, the flow must be uniform in the far field, away from the

obstructions. We therefore impose the conditions

∇φ→ 0 as x→∞, (12)

∇φ→ γ − 1 as x→ −∞. (13)

This completes the formulation of the problem.

III. NUMERICAL SCHEME

To solve the system of nonlinear equations numerically, we employ the boundary integral

scheme used by Cooker et al.13, Grimshaw Maleewong and Asavanant2 and Grimshaw and

Maleewong3.

At time t = 0, we begin by computing a steady fully nonlinear hydraulic fall solution

using the scheme outlined in Page et al.10 and Dias and Vanden-Broeck7. Here, the channel

bottom is fixed, and the fluid flows past the obstacle from left to right. The unsteady
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variables X, Y and φs on the free surface, at t = 0 and an initial guess for φx on the channel

bottom are then obtained by considering the relationship between the variables in the steady

and unsteady cases. By numerically integrating φs using the trapezoidal rule we obtain φ

on the free surface at t = 0, and the variables Bx, X
′, X ′′, Y ′ and Y ′′ at t = 0 are obtained

by numerical differentiation.

The remaining unknowns at t = 0 are φn on the free surface and φx on the channel

bottom. They are obtained from two integral differential equations, see equations (16) and

(17) below.

Firstly, we introduce the complex variable z = x+iy, and the complex potential w(z, t) =

φ(x, y, t) + iψ(x, y, t), where ψ(x, y, t) is the stream function. The Cauchy integral formula

is applied to the function

χ =
dw

dz
= φx − iφy (14)

around the contour C, which consists of the free surface, the channel bottom, and lines

joining them at x = ±∞. On the free surface we have

χ =
(φsX

′ − φnY ′)− i(φsY ′ + φnX
′)

X ′2 + Y ′2
. (15)

We take the evaluation point z = X(s, t) + iY (s, t) to be on the free surface and let z∗ be

the varying point on the contour C, such that z∗ = X(s∗, t) + iY (s∗, t) = X∗ + iY ∗ on the

free surface, and z∗ = x∗ + iB(x∗) = x∗ + iB∗ on the channel bottom. Next, we multiply

both sides of the Cauchy integral equation by i(X ′ + iY ′), and then using the kinematic

condition at a given time and taking the real part of the Cauchy integral formula, we obtain

the integro differential equation

φn(X(ξ), Y (ξ)) =− 1

π

∫ ∞
−∞

φ∗s(X
′(X∗ −X) + Y ′(Y ∗ − Y )) + φ∗n(Y ′(X∗ −X)−X ′(Y ∗ − Y ))

(X∗ −X)2 + (Y ∗ − Y )2
ds∗

+
1

π

∫ ∞
−∞

(φ∗x(1 +B∗2x ) +B∗2x )(X ′(x∗ −X) + Y ′(B∗ − Y )) +B∗x(Y
′(x∗ −X)−X ′(B∗ − Y ))

((x∗ −X)2 + (B∗ − Y )2)
dx∗.

(16)

Similarly, when the evaluation point lies on the channel bottom y = B(x, t), and we take

the imaginary part of the equation, we obtain the second integro differential equation

φx(x,B(x)) =
1

π

∫ ∞
−∞

φ∗s(Y
∗ −B) + φ∗n(X∗ − x)

(X∗ − x)2 + (Y ∗ −B)2
ds∗

− 1

π

∫ ∞
−∞

B∗x(x
∗ − x) + (φ∗x(1 +B∗2x ) +B∗2x )(B∗ −B)

(x∗ − x)2 + (B∗ −B)2
dx∗. (17)
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The integro-differential equations (16) and (17) are solved numerically using Newton’s

method. The free surface and channel bottom are discretized using N and M equally spaced

meshpoints, respectively. Thus, there are N +M unknowns; φn(i) for i = 1, ..., N and φx(i)

for, i = 1, ...,M , where φn(i) represent the values of φn at grid point i on the free surface,

and similarly for φx(i) on the channel bottom. The integro-differential equations are trun-

cated at −A and B, where A and B are large positive constants, and then evaluated at the

N +M − 2 mesh midpoints using the trapezoidal rule with summation over the meshpoints.

Following Dias and Vanden-Broeck15, the truncation error is minimized by considering the

integrals from −∞ to −A and B to ∞. The integrals from B to ∞ approximate to zero,

so can be neglected, but the integrals from −∞ to −A are non-zero. We evaluate them

analytically by approximating the unknowns by their values at the first mesh point on the

free surface and channel bottom respectively. We then obtain the corrections T1 and T2 to

the truncated versions of the integro-differential equations (16) and (17), respectively;

T1 =− 1

2
φs(1)X ′(i) log

(
(X(1)−X(i))2 + (Y (1)− Y (i))2

)
− φs(1)Y ′(i) arctan

(
X(1)−X(i)

Y (1)− Y (i)

)
+

1

2
φx(1)X ′(i) log ((x(1)−X(i))2 + (B(1)− Y (i))2)

+ φx(1)Y ′(i) arctan

(
x(1)−X(i)

B(1)− Y (i)

)
−C

2
(γ − 1)Y ′(i), (18)

where

C =


0 if Y (1) < Y (i)

π if Y (1) = Y (i)

2π if Y (1) > Y (i)

, (19)

and

T2 =
φs(1)

X ′(1)

(
arctan

(
X(1)− x(i)

Y (1)−B(i)

)
+
π

2

)
−φx(1)

(
arctan

(
x(1)− x(i)

B(1)−B(i)

)
+
D

2

)
, (20)
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where

D =


−π if B(1) < B(i)

0 if B(1) = B(i)

π if B(1) > B(i)

. (21)

We now have N−1 equations from the first integral equation, together with its truncation

correction T1, and M − 1 equations from the second integral equation, with its truncation

correction T2. The remaining two equations come from defining the flow in the far field, and

are given by

φx(1) = γ − 1 on y = B(x), (22)

φn(N) = 0 on y = 1 + η(x). (23)

The equations (16), (17), (22) and (23) are then solved numerically at a given time, to find

the N +M unknowns, φn and φx, on the free surface and the channel bottom respectively.

Using equations (11) we obtain φx and φy on the free surface, and can thus march the

solution forward in time using the fourth-order Adams-Bashforth-Moulton scheme to solve

the equations (5)-(7). As this scheme requires information from the previous three time

steps, we use the single step fourth order Runge-Kutta algorithm for the first three time

steps from the initial steady solution.

We summarize the algorithm used to solve the problem as follows:

1. Obtain an initial steady solution using the scheme defined in Page et al.10 or Dias and

Vanden-Broeck7. Obtain the related unsteady variables, and initialize φn = φx = 0.

2. Approximate X ′, X ′′, Y ′, Y ′′, φs and their midpoints using finite differences and a four

point dyadic interpolation scheme.

3. Solve the integro-differential equations (16) and (17) numerically using Newton’s

method, to find φn and φx on the free surface and channel bottom respectively. Then

calculate φx and φy on the free surface by substituting the values found into (11).

4. Advance X, Y and φ forward in time on the free surface, using equations (5)-(7).

Repeat from step two.
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IV. RESULTS

In this section we present results obtained using the numerical method described in

Section 3. Following Dias and Vanden-Broeck7 and Page et al.10, the submerged obstructions

on the bottom of the channel are given cosine squared profiles of the form

B(x, t) =


2A1 cos2

(
π(x+xd+t)

2L1

)
−L1 < x+ xd + t < L1,

2A2 cos2
(
π(x+t)

2L2

)
−L2 < x+ t < L2,

0 otherwise.

(24)

The height and widths of the obstructions are thus defined by 2Ai and Li, i = 1, 2 respec-

tively. The obstacle with height A2 has been chosen so that initially, at time t = 0, it is

centered at the origin. At all time, the obstructions are separated by a distance xd. In the

case of solutions over a single obstruction, we set A1 = 0.

In order to ensure the accuracy of our numerical scheme and to motivate the study of the

stability of hydraulic falls, we first modifed our scheme to look for time dependent forced

solitary waves. We removed the truncation corrections (18) and (20) and modified the far

field conditions (22) so that there is no flow upstream as x→ ±∞;

φx(1) = 0. (25)

We describe in detail the solutions we obtained in such a configuration, in the appendix

at the end of the paper. The solutions were in agreement with the results obtained in

previous work by Grimshaw and Maleewong3 and Chardard et al.11. Thus, they validate the

numerical scheme in section III, which we now use to investigate the stability of hydraulic

fall solutions.

A. Gravity hydraulic falls

Gravity hydraulic fall solutions which have subcritical flow (Fup < 1) upstream and

supercritical flow (F > 1) downstream are examined. We therefore set τ = 0, A1 = 0,

and take A2 > 0 so that y = B(x, t) describes a channel bottom with just a single moving

obstruction.

In figure 2 we show the evolution of a hydraulic fall with F = 1.34, over an obstruction

characterised by A2 = 0.05, L2 = 3.2. The hydraulic fall is seen to maintain its shape,
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FIG. 2. (a) Evolution in time of a pure gravity hydraulic fall profile with F = 1.34. Initially, a

steady free surface profile is utilized (the lowest profile). The vertical axis is then moved upwards

by 0.01 for each plot shown, such that tn = 5n for plots n = 0, ..., 12. (b) A close-up of the

downstream free surface evolution shown in (a).

and moves upstream with the submerged obstruction. This suggests that the pure gravity

hydraulic fall is stable. Downstream of the fall a small decaying wave train is generated

and propagates downstream as time progresses. As time continues to evolve, further waves

appear to be shed downstream of the fall. These waves propagate slowly upstream of the

hydraulic fall. The evolution of the downstream profiles can be seen in figure 2(b). It is

likely that these waves are the result of implicitly perturbing the solution at t = 0, by using

the numerical methods involved in the scheme outlined in section III to approximate the

initial solution.

Next we add a perturbation to the initial steady flow over the fall, of the form

y = ys(1 + λ cos(µx)e−(x
2 )

2

) (26)

where λ ≤ 0.1 and µ ≤ 10 are positive constants, and ys is the initial steady state solution.

We find that as we advance the solution forward in time this perturbation decays, and

the solution settles to the steady hydraulic fall solution. However, a small wave train is

generated after the fall and propagates very slowly downstream. As we continue to advance

the solution forward in time, a further wave train is shed from the bottom of the hydraulic

fall and this propagates very slowly upstream. Figures 3 and 4 show the evolution of the
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FIG. 3. (a) Evolution in time, of a pure gravity hydraulic fall profile with F = 1.35. Initially,

a steady free surface profile is perturbed (the lowest profile). The vertical axis is then moved

upwards by 0.01 for each plot shown, such that tn = 5n for plots n = 0, ..., 9. (b) A close-up of the

downstream free surface evolution shown in (a).

hydraulic fall with F = 1.344, over an obstruction classified by A2 = 0.05, L2 = 3.2. The

propagation of the waves downstream of the hydraulic fall is clearly seen as time progresses.

Locally, over the obstruction, figure 4(d) shows that the solution profile has become that of

a classical hydraulic fall in the absence of a perturbation. Explicitly perturbing the solution

has thus increased the disturbances shed from the hydraulic fall. However, all our results

suggest that the pure gravity classical hydraulic fall is stable, and are thus in agreement

with those obtained by Chardard et al.11 and Donahue and Shen12 using a weakly nonlinear

analysis.

B. Gravity trapped waves

When A1 6= 0 and the second obstruction is placed upstream of the hydraulic fall (xd > 0),

Dias and Vanden-Broeck7 have shown that a train of gravity waves may be found, trapped

between the two obstructions. We follow this solution in time and observe that, as time

evolves, the wavelength and amplitude of the waves appears to remain constant, see for

example, the solution profile shown in figure 5. The persistence of the shape of the free

surface suggests that the trapped wave solutions are also stable. Such solutions have also
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FIG. 4. Free surface profiles of the initially perturbed pure gravity hydraulic fall with F = 1.35,

at different time steps; (a) t = 0, (b) t = 5, (c) t = 17.5, and (d) t = 35.

been observed in experiments. Pratt8 choose the height and lengths of the submerged

obstructions in his experiments for example, so that the flow would take the form of long

waves. He was then able to interpret his results in terms of the weakly nonlinear Korteweg-

de Vries model equation. He observed different types of steady solutions including hydraulic

falls and the solutions obtained by Dias and Vanden-Broeck7, with a train of waves trapped

solely between the two obstacles. So the stability of the pure gravity hydraulic falls and

trapped wave solutions appears to be a physically realistic result; we would indeed expect

these solutions to be stable.
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FIG. 5. (a) Time evolution of a pure gravity hydraulic fall profile, F = 1.33, with a train of waves

trapped between two obstructions. Initially, a steady free surface profile is utilized (the lowest

profile). The vertical axis is then moved upwards by 0.04 for each plot shown, such that tn = 20n

for plots n = 0, ..., 3. (b) A close-up of the downstream free surface evolution shown in (a).

Downstream of the hydraulic fall a small amplitude wave train is found. As time pro-

gresses the length of the flow domain which is effected by the downstream disturbances

grows. The downstream part of the free surface profiles can be seen in figure 5(b). A second

wave train is shed from the hydraulic fall as in the single obstruction results in the previous

two sections. This second wave train propagates upstream with the hydraulic fall.

C. Gravity hydraulic falls with a solitary type wave

When xd < 0, so that the second obstruction is found downstream of the hydraulic fall,

in the steady case a solitary type wave is found to form over the additional obstruction, see

Belward9. Following this solution in time we find that it is also stable. Both the hydraulic

fall and the solitary type wave are found to move downstream with their respective obstacles.

The solitary wave is a perturbation from the uniform stream. Such solutions have previously

been shown to be stable, see for example the appendix. We have shown in section IV A that

the hydraulic fall is stable and so one would expect the hybrid solution of the hydraulic fall

followed by the solitary wave to be stable, as found.

Figure 6 shows the evolution of this type of solution with time. Downstream of the
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FIG. 6. (a) Time evolution of a pure gravity hydraulic fall profile, F = 1.35, with a solitary type

wave downstream of the fall. Initially, a steady free surface profile is utilized (the lowest profile).

The vertical axis is then moved upwards by 0.01 for each plot shown, such that tn = 5n for plots

n = 0, ..., 10. (b) A close-up of the downstream free surface evolution shown in (a).

hydraulic fall a small disturbance develops. The width of this disturbance grows slowly as

it advances downstream past the solitary type wave.

D. Gravity-capillary hydraulic falls

Next, we include the effects of surface tension in our numerical scheme and consider

results for different values of τ . Initially, we compute the gravity-capillary hydraulic fall

solutions obtained in Page et al.10. Small amplitude numerical waves resulting from trun-

cating the domain downstream at A > 0 instead of infinity, for some large constant A,

appear downstream of the fall. We advance initial solutions, with different values of τ , for-

ward in time. It is found that the hydraulic falls maintain their shape and move upstream

with the submerged obstruction. As in the pure gravity case, a wave is shed from the fall

and moves downstream away from the obstruction. Furthermore, we see that the numeri-

cal waves advance with the hydraulic fall so that far downstream, at greater time, the free

surface appears to be uniform, in the absence of any disturbances shed from the hydraulic

fall.

Figure 7(a) shows an advancing solution profile with F = 1.36, τ = 0.3. It can be seen
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FIG. 7. (a) Time evolution of gravity-capillary hydraulic fall profiles with τ = 0.3. Initially, a

steady free surface profile is utilized (the lowest profile). The vertical axis is then moved upwards

by 0.01 for each plot shown, such that tn = 5n, n = 0, ..., 15. (a) A close-up of the downstream

free surface evolution shown in (b).

that firstly, a depression wave is shed from the fall, which propagates downstream. As time

progresses an elevation wave then starts to emerge, propagating steadily upstream with the

fall. Wave trains which are roughly symmetrical about x = 0 propagate both upstream

and downstream of the fall, as time progresses, for the hydraulic fall with F = 1.37 and

τ = 0.6. In all the cases we considered, for 0.1 ≤ τ ≤ 0.9, locally, over the obstruction we

found that the hydraulic fall maintained its shape as time evolved. This suggests that the

gravity-capillary hydraulic fall is also stable.

When the surface tension is weak upstream, the upstream dispersion relation possesses

a minimum. Page et al.10 showed that as the upstream Froude number of the hydraulic fall

solution is increased towards this minimum, a small decaying wavetrain appears on the free

surface immediately before the hydraulic fall. Using such a solution profile at initial time,

we follow this result in time. Figure 8 shows the time evolution of the free surface. As time

develops, the upstream wave train does not appear to change form. The solution profile

maintains its shape, suggesting that this solution is also stable.

We now add a perturbation in the form given by (26), to the initial steady solution. As

the solution advances forward in time we see that this initial perturbation spreads out very
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FIG. 8. Time evolution of a gravity-capillary hydraulic fall profile with τ = 0.2, F = 1.2, past an

obstruction characterised by A2 = 0.015, L2 = 3.2. Initially, a steady free surface profile is utilized

(the lowest profile). The vertical axis is then moved upwards by 0.01 for each plot shown, such that

tn = 5n for plots n = 0, ..., 10. A small decaying wave train can be seen upstream of the hydraulic

fall.

quickly and radiates away so that the local solution, over the obstruction, settles to the

classical gravity-capillary hydraulic fall. This supports the suggestion that including surface

tension in the scheme, does not change the stability of the hydraulic fall.

Downstream of the hydraulic fall, waves continue to be shed, as in the pure gravity case.

However, it appears that the capillarity dampens the waves; they are much less prominent

in the gravity-capillary cases than in the pure gravity case. Figure 9 demonstrates this,

showing two solution profiles, with τ = 0.1 and τ = 0.6.

E. Gravity-capillary trapped waves

Page et al.10 obtained gravity-capillary solutions with a train of waves trapped between

two obstructions. Unless the surface tension is very small, the second obstruction is placed

downstream of the hydraulic fall. Following Page et al. we obtain a steady solution. Then,

using this result as the initial profile for our numerical scheme, we follow the solution in

time. A typical free surface profile with τ = 0.7 is shown in figure 10. The trapped waves

in this case appear to be unstable. In figure 10(b) we show the initial solution at time t = 0

(the solid line), superimposed with the solution at time t = 14 (the dashed line). It is clearly
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FIG. 9. Time evolution of gravity-capillary hydraulic fall profiles; (a) τ = 0.1, (b) τ = 0.6.

Initially, a steady perturbed free surface profile is utilized (the lowest profile). The vertical axis is

then moved upwards by 0.01 for each plot shown, such that tn = 5n for n = 0, ..., 12.
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FIG. 10. Time evolution of a gravity-capillary hydraulic fall profile with τ = 0.7, F = 1.38, past

two obstructions characterised by A2 = 0.05, L2 = 3.2 and A1 = 0.02, L1 = 3.2 with xd = −20.

Initially, a steady free surface profile is utilized (the lowest profile in (a)). In (a) the vertical axis

is then moved upwards by 0.01 for each plot shown, such that tn = 2n for plots n = 0, ..., 7. In (b)

the solution profiles are this time viewed in a frame of reference moving with the obstructions. The

solid line shows part of the solution at t = 0, and the dashed line part of the solution at t = 14.
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FIG. 11. Time evolution of a gravity-capillary hydraulic fall profile with τ = 0.3, F = 1.36, past

two obstructions characterised by A2 = 0.05, L2 = 3.2 and A1 = 0.02, L1 = 3.2 with xd = −20.

Initially, a steady free surface profile is utilized. The vertical axis is then moved upwards by 0.01

for each plot shown, such that tn = 10n for plots n = 0, ..., 7.

seen that the amplitude of the trapped waves has decreased with time, suggesting that the

trapped waves between the two obstructions are unstable. However, the hydraulic fall over

the first obstruction and the elevation wave over the second obstruction appear to be stable.

Page et al. showed that for weak surface tension, if the height of the downstream sub-

merged obstruction is too small, any trapped waves that may exist between the obstructions,

are not actually easily visible. In figure 11 we follow a typical solution profile, with τ = 0.3,

forward in time. This solution appears to be stable. Of course, we would expect that any

trapped waves that do actually exist between the two obstructions, would still decay with

time.

When the surface tension is very small, so that the upstream Froude number intersects the

upstream linear dispersion relation, Page et al.10 showed that gravity-capillary trapped waves

could be obtained by placing the second obstruction upstream of the hydraulic fall. After

obtaining such a steady solution, we use it as the initial profile in our numerical scheme,

to advance the solution forward in time. Figure 12(a) shows typical solution profiles at

different times. In figure 12(b) we show the initial solution at time t = 0 (the solid line),

superimposed with the solution at time t = 20 (the dashed line). The amplitude of the

trapped waves at time t = 20 is clearly smaller than the amplitude of those at t = 0. This

suggests that this type of solution is unstable.
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FIG. 12. Time evolution of a gravity-capillary hydraulic fall profile with τ = 0.1, F = 1.35, past

two obstructions characterised by A2 = 0.05, L2 = 3.2 and A2 = 0.01, L1 = 3.2 with xd = 20.

Initially, a steady free surface profile is utilized (the lowest profile in (a)). In (a) the vertical axis

is then moved upwards by 0.05 for each plot shown, such that tn = 6n for plots n = 0, ..., 6. In (b)

the solution profiles are this time viewed in a frame of reference moving with the obstructions. The

solid line shows part of the solution at t = 0, and the dashed line part of the solution at t = 20.

It therefore appears that gravity-capillary trapped wave solutions may be unstable. The

amplitude of the waves, whether they occur upstream or downstream, appears to decrease

with time.

F. Gravity-capillary hydraulic falls with a solitary type wave

Providing that the surface tension is not so small that the upstream Froude number inter-

sects the upstream linear dispersion relation, solitary type waves can be obtained upstream

of the hydraulic fall, over the additional obstruction (see Page et al.10). A depression wave

is obtained over a positively orientated obstacle. In figure 13 we follow such a solution, with

τ = 0.7, forward in time. The depression wave is seen to move with its underlying obstacle,

suggesting that this solution is stable.

When the surface tension is weak there exists a minimum in the upstream linear dispersion

relation. If the Froude number is close to the minimum, the solitary type wave in the steady

solution has small decaying oscillations in its tail. In figure 14 we follow such a solution,
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FIG. 13. Time evolution of gravity-capillary hydraulic fall profiles. Initially, a steady free surface

profile over two obstructions is utilized. The second obstruction is placed upstream of the hydraulic

fall. The vertical axis is then moved upwards by 0.01 for each plot shown, such that tn = 2n for

plots n = 0, ..., 16.

found over a negatively orientated obstruction, forward in time. Figure 14(b) demonstrates

how the solitary wave itself appears to maintain its shape as time evolves, but the decaying

oscillations in the tail of the wave, appear to decreases in amplitude with time.

V. DISCUSSION

Unsteady, forced critical flow solutions were computed in both the pure gravity and

gravity-capillary cases, for the fully nonlinear problem. By following the solutions in time,

we assessed the stability of hydraulic falls past a single submerged obstruction, as well as

the various results found in Dias and Vanden-Broeck7, Belward9 and Page et al.10 for flow

past two submerged obstructions.

It was shown that both the pure gravity and the gravity-capillary hydraulic falls are

stable. This result, in the pure gravity case, is in agreement with the weakly nonlinear

results obtained by Chardard et al.11 and Donahue and Shen12. In the case of two submerged

obstructions, it was shown that the solution with an upstream train of trapped waves between

the two obstructions, are stable in the pure gravity case.

In the gravity-capillary case, both the solutions with trapped waves appearing down-

stream and the very small Bond number solutions with trapped waves appearing upstream,
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FIG. 14. Time evolution of a gravity-capillary hydraulic fall profile with τ = 0.19, F = 1.38, past

two obstructions characterised by A2 = 0.03, L2 = 3.2 and A1 = −0.03, L1 = 3.2 with xd = 20.

Initially, a steady free surface profile is utilized (the lowest profile in (a)). In (a) the vertical axis is

then moved upwards by 0.01 for each plot shown, such that tn = 2n for plots n = 0, ..., 12. In (b)

the solution profiles are this time viewed in a frame of reference moving with the obstructions. The

solid line shows part of the solution at t = 0, and the dashed line part of the solution at t = 19.

appear to be unstable. We found that the amplitude of the waves decreases with time. In

the absence of the current computational restraints, it may be of interest to follow these

solutions further in time to see if the trapped waves between the submerged obstructions

disappear completely. Furthermore, Page et al.10 showed that there exist multiple families of

gravity-capillary downstream trapped wave solutions. Here, we have considered the stability

of only one of these types, but the stability of the other types may also be of interest.

When the free surface over the additional obstruction is a solitary type wave, we have

shown that both the gravity and the gravity-capillary solutions appear to be stable. Of

course, it should be noted that due to the computational limitations associated with solving

such a fully nonlinear problem, we were only able to follow the free surface profiles so far

in time. If we were able to advance the solutions much further in time, we may indeed

discover that some of the ‘stable’ solutions presented in this paper do in fact later develop

instabilities.

We have thus concluded that gravity and gravity-capillary hydraulic falls, gravity trapped
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waves upstream of a hydraulic fall and hydraulic falls with a solitary type wave either up-

stream (in the gravity-capillary case) or downstream (in both the pure gravity and gravity-

capillary cases) are stable. Three of these solutions, the pure gravity solutions, have been

observed experimentally, for example, by Pratt8. We would therefore expect that all three of

these solutions can be found naturally or in everyday situations, when the correct flow con-

figurations present themselves. In the gravity-capillary case, one would therefore also expect

to be able to observe/experiment with the hydraulic fall and the hydraulic fall superimposed

with a solitary type wave further up or downstream. However, as we have ignored the effects

of viscosity in our analysis, which very quickly dampens capillary waves, solutions where

the surface tension is strong, are likely only to be observable at very shallow water depths.

Furthermore, as we have concluded that gravity-capillary trapped waves up or downstream

of a hydraulic fall are unstable, one would not expect such flows to be observed in nature.

We did not compute ‘rising hydraulic falls’ where the flow upstream of the hydraulic fall

is supercritical and downstream is subcritical, so that the depth of the fluid increases over

the submerged obstruction, due to the complexities in the boundary conditions. However,

we speculate that such flows would be unstable. Pratt8 considered the characteristic curves

of solutions obtained using long-wave theory. He showed that in the case of two underlying

obstructions where the flow was such that a hydraulic fall occured over the first obstruction

and a ‘rising hydraulic fall’ occured over the second, or vice versa, the hydraulic fall was

stable but the ‘rising hydraulic fall’ was not. Furthermore, ‘rising fronts’ are not observed

in nature, see for example Viollet et al.16. This suggess that these flows are unstable.
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FIG. 15. Solitary wave solution branch. The underlying obstacle is characterised by A2 = 0.001,

L2 = 2.

Appendix: Pure gravity solitary wave analysis

Steady forced solitary wave solutions are not unique. Vanden-Broeck1 showed that for

a particular range of Froude numbers there exist two solutions with the same value of F ;

a small amplitude wave bifurcating from the uniform stream and a large amplitude wave

bifurcating from the pure solitary wave.

We consider pure gravity solutions over a single small obstacle, A2 = 0.001, L2 = 2. The

steady forced solution branch in the F − y(0) plane is well known, and is shown in figure 15.

The lower part of the branch, before the turning point, corresponds to solutions bifurcating

from the uniform stream. The upper part of the branch corresponds to forced solitary waves

bifurcating from the pure solitary wave solution.

Firstly, we follow the initial steady solutions on the lower part of the branch, with F = 1.1,

F = 1.2 and F = 1.32, forward in time. We find that the forced solitary wave is stable in

each case. It moves upstream with the submerged obstruction. Solution profiles are shown

in figure 16. Grimshaw and Maleewong3 considered comparable solutions that were forced

by a local pressure distribution. Our findings are in agreement with their results and thus

confirm our solutions and methodology.

When the initial steady solution is on the upper part of the solution branch in figure 15,

we find that the forced solitary wave is unstable. For F close to one we see that the forced

solitary wave starts to move upstream away from the obstacle. For larger F the amplitude of
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FIG. 16. Evolution of pure gravity solitary waves with F ≈ 1.1 and F ≈ 1.3 in time. Initially,

a steady solitary wave bifurcating from the uniform stream is utilized (the lowest profile). The

vertical axis is then moved upwards by 0.005 for each plot shown, such that tn = 5n for plots

n = 0, ..., 10.

the solitary wave sharpens very quickly, until the solution breaks at an early time. We show

the evolution of the free surface in figure 17. Although it is hard to see in the figure, the

solution profile at t = 50 in figure 17(a) has moved a distance of x ≈ 0.14 upstream of the

submerged obstruction. Again, our results are in agreement with work done by Grimshaw

and Maleewong3 for flow past a pressure distribution.

Next we add a small perturbation to the initial steady solution of the form

y = (1− α)y0 + α, (A.1)

where −0.1 ≤ α ≤ 0.15 and y0 is the initial solution. We consider a larger obstacle than

above and thus take A2 = 0.05 and L2 = 3.2.

When the steady solution bifurcating from the uniform stream is perturbed for any α,

we find that the solitary wave recovers its original state and moves upstream with the

obstruction, see figure 18. So again, we observe that this solitary wave is stable. Transient

waves appear downstream of the solitary wave. This result is in agreement with the results

of Chardard et al.11, obtained using a fKdV equation.

The solution bifurcating from the pure solitary wave is again shown to be unstable. When

the perturbation is less than the initial steady state solution, the amplitude of the solitary
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FIG. 17. Evolution of pure gravity solitary waves with F ≈ 1.2 and F ≈ 1.3 in time. Initially, a

steady solitary wave profile bifurcating from a pure solitary wave is utilized (the lowest profile).

The vertical axis is then moved upwards by (a) 0.005 for each plot shown, such that tn = 5n for

plots n = 0, ..., 10., and (b) 0.01 for each plot shown, such that tn = n for plots n = 0, ..., 4.
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FIG. 18. Evolution of pure gravity solitary waves with F = 1.5 in time. Initially, a steady solitary

wave bifurcating from the uniform stream, perturbed by (A.1), is utilized. The bold solution

shows the initial solitary wave. The dashed line is the perturbed solution when (a) α = 0.1 and (b)

α = −0.1. The vertical axis is moved upwards by 0.01 for for each plot shown, such that tn = 10n

for plots n = 0, ..., 7.
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FIG. 19. Evolution of perturbed pure gravity solitary waves with F = 1.3 in time. Initially, a

steady solitary wave bifurcating from a pure solitary wave, perturbed by (A.1), is utilized. The

bold solution shows the initial solitary wave. The dashed line is the perturbed solution when (a)

α = 0.15 and (b) α = −0.1.. The vertical axis is moved upwards by 0.01 for each plot shown, such

that tn = 10n for plots n = 0, ..., 5, 5.6.

wave is found to decrease, see figure 19(a). When the perturbation is greater than the steady

state solution we see that the amplitude of the solitary wave increases. The crest sharpens

until eventually the wave breaks, see figure 19(b). In their weakly nonlinear analysis using a

fKdV equation, Chardard et al.11 obtained similar results. They found that with the smaller

perturbation, the solitary wave decreases towards the stable bifurcation from the uniform

stream. For the larger perturbation, their scheme was unable to predict breaking of the

waves. Instead they found solutions where the large solitary wave propagated upstream

away from the obstruction, leaving behind a solitary wave bifurcating from the uniform

stream.
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